Bayesian ROC curve estimation under verification bias.
نویسندگان
چکیده
Receiver operating characteristic (ROC) curve has been widely used in medical science for its ability to measure the accuracy of diagnostic tests under the gold standard. However, in a complicated medical practice, a gold standard test can be invasive, expensive, and its result may not always be available for all the subjects under study. Thus, a gold standard test is implemented only when it is necessary and possible. This leads to the so-called 'verification bias', meaning that subjects with verified disease status (also called label) are not selected in a completely random fashion. In this paper, we propose a new Bayesian approach for estimating an ROC curve based on continuous data following the popular semiparametric binormal model in the presence of verification bias. By using a rank-based likelihood, and following Gibbs sampling techniques, we compute the posterior distribution of the binormal parameters intercept and slope, as well as the area under the curve by imputing the missing labels within Markov Chain Monte-Carlo iterations. Consistency of the resulting posterior under mild conditions is also established. We compare the new method with other comparable methods and conclude that our estimator performs well in terms of accuracy.
منابع مشابه
Bayesian bootstrap estimation of ROC curve.
Receiver operating characteristic (ROC) curve is widely applied in measuring discriminatory ability of diagnostic or prognostic tests. This makes the ROC analysis one of the most active research areas in medical statistics. Many parametric and semiparametric estimation methods have been proposed for estimating the ROC curve and its functionals. In this paper, we propose the Bayesian bootstrap (...
متن کاملNon-parametric estimation of ROC curve
Receiver operating characteristic (ROC) curve is widely applied in measuring discriminatory ability of diagnostic or prognostic tests. This makes ROC analysis one of the most active research areas in medical statistics. Many parametric and semiparametric estimation methods have been proposed for estimating the ROC curve and its functionals. In this paper, we propose a fully nonparametric Bayesi...
متن کاملBayesian ROC curve estimation under binormality using a partial likelihood based on ranks
There are various methods to estimate the parameters in the binormal model for the ROC curve. In this paper, we propose a conceptually simple and computationally accessible Bayesian estimation method using a partial likelihood based on ranks. Posterior consistency is also established. We compare the new method with other estimation methods and conclude that our estimator generally performs bett...
متن کاملBayesian Estimation of Combined Accuracy for Tests with Verification Bias.
This presentation will emphasize the estimation of the combined accuracy of two or more tests when verification bias is present. Verification bias occurs when some of the subjects are not subject to the gold standard. The approach is Bayesian where the estimation of test accuracy is based on the posterior distribution of the relevant parameter. Accuracy of two combined binary tests is estimated...
متن کاملBayesian ROC curve estimation under binormality using a rank likelihood
There are various methods to estimate the parameters in the binormal model for the ROC curve. In this paper, we propose a conceptually simple and computationally feasible Bayesian estimation method using a rank-based likelihood. Posterior consistency is also established. We compare the new method with other estimation methods and conclude that our estimator generally performs better than its co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Statistics in medicine
دوره 33 29 شماره
صفحات -
تاریخ انتشار 2014